Отраслевые подборки (УДК)
Издания подборки 41 - 50 из 68
41.

Количество страниц: 3 с.

Examination of auroral absorption (AA) occurrence rate and AA meridional distribution versus local time and in the course of the solar cycle has been performed by riometer observations from 1985 to 1995 at the longitude of Yakutsk. Geomagnetic latitude of the region of absorption maximum occurrence changes in the course of the solar cycle from 66.5° to 64.4°. The largest displacement of this region to lower latitudes is observed during years of maximum solar activity. The half-width of the region is ~8° at solar minimum and ~10° at solar maximum. It has been also revealed that the region of AA is shifted to higher latitudes at daytime (1000-1400LT), and to lower ones in the evening (1800-2000LT), the displacement from the daily average position being ~1° and ~3° in the years of solar activity maximum and minimum, respectively. In all years at 2000-2100LT a short-term extension of the AA region by 1-4° is observed. The interpretation of the observationa is proposed.

Sokolov, V. D. The dynamics of auroral absorption parameters in the 22nd solar activity cycle / V. D. Sokolov, S. N. Samsonov // Physics of auroral phenomena : proceedings of the 26th annual seminar, 25 - 28 February 2003. – 2003. – P. 95-97.

42.

Количество страниц: 4 с.

From data of riometer observations from 1986 to 1993 at stations of Kotelny Island, Tixie Bay and Zhigansk the semi-diurnal variations of occurrence frequency of auroral absorption and their dependence on geomagnetic activity have been determined. It has been found that the phase of semi-diurnal variation maximum is systematically shifted to earlier hours with the rise of geomagnetic disturbance. The reason of this experimental fact is discussed.

Sokolov, V. D. Dependence of semi-diurnal variation of auroral absorption on a geomagnetic disturbance / V. D. Sokolov, A. A. Danilov, S. N. Samsonov // Physics of auroral phenomena : proceedings of the 26th annual seminar, 25 - 28 February 2003. – 2003. – P. 91-94.

43.

Количество страниц: 4 с.

Based on the data of longitudinal chain of midlatitude stations in the northern hemisphere, substorm-associated field-alighned currents (FACs) are examined. A comparison of IMF component variations with surface FAC characteristics in substorm sites is performed. It is shown that the ratio between the upward and downward surface FAC intensities depends on By IMF. In this regard, the conditions are discussed that favor currents flowing from the dayside cusp to nightside auroral region. These currents, which position is dependent on By IMF direction, can be responsible for difference between the upward and downward current-wedge-associated FACs.

Effect of Bγ IMF in substorm current wedge formation / V. A. Velichko, R. N. Boroev, I. Ya. Plotnikov, D. G. Baishev // Physics of auroral phenomena : proceedings of the 26th annual seminar, 25 - 28 February 2003. – 2003. – P. 45-48.

44.

Количество страниц: 3 с.

Splitting of auroral electrojets: ground-based and satellite data / D. G. Baishev, V. A. Velichko, E. E. Antonova, L. I. Gromova, M. V. Stepanova, R. A. Kovrazhkin, J. M. Bosqued // Physics of auroral phenomena : proceedings of the 26th annual seminar, 25 - 28 February 2003. – 2003. – P. 9-11.

45.

Количество страниц: 4 с.

Galactic cosmic ray (GCR) diffusion in interplanetary space depends in a certain way on the degree of regularity of the interplanetary magnetic field (IMF). The sector IMF structure is manifested in inhomogeneous GCR distribution in the heliosphere. In parallel with the usual sectors associated with solar activity, one should take into account the sectors, which are caused by the Jupiter activity. It is known that the Jupiter is a powerful regular source of high-energy electrons (0.2-40 MeV), the density of which, on the average, is many times higher than that of solar cosmic rays. The high-energy electrons are systematically registed with the 399-day period in the near-Earth space. According to estimations of the particle energy density their flux is sufficient to decrease the magnetic field in the Jovian sector and can due to corresponding large-scale inhomogeneity in the GKL distribution. Hereby, we present the evidences that the GCR diffusion is noticeably stronger in the sector where there are Jovian electrons. By data on periodic passage of those sectors near the Earth, we have treated neutron monitor data using the superposed epoch technique. The day of the Earth and Jupiter opposition is taken as a zero epoch. At large statistical data (9925 days) it is found that the GCR intensity in that period increases with an amplitude near 1%. The groud effect is manifested with the period of 399 days and its maximum time is in a certain way shifted relative to the planet opposite moment.

Skryabin, N. G. Influence of Jupiter on cosmic ray intensity variations / N. G. Skryabin, S. N. Samsonov, I. Ya. Plotnikov // Physics of auroral phenomena : proceedings of the 25th annual seminar, Apatity, 26 February – 1 March 2002. – 2002. – P. 137-139.

46.

Количество страниц: 4 с.

Sokolov, V. D. Dependence of appearance frequency of auroral absorption on its intensity / V. D. Sokolov, S. N. Samsonov // Physics of auroral phenomena : proceedings of the 25th annual seminar, Apatity, 26 February – 1 March 2002. – 2002. – P. 55-58.

47.

Количество страниц: 4 с.

Long-lasting ground based measurements of a polarization jet (PJ) by the latitudinal chain of ionospheric stations in Yakutia (3 < L < 5; MLT = UT + 9 h) and by 5 subauroral Russian stations were analyzed. A number of cases were found when PJ was recorded simultaneously with energetic ion observations by AMPTE/CCE and INTERBALL 2. The data comparison shows that at least in the considered cases of strong magnetic substorms, PJ was accompanied by strong injection of ions with the energy of ~20-50 keV and intensity of ~10 cm-² c-¹ sr-¹keV-¹. Close to the injection region in the near midnight sector no ion dispersion was observed, but in the evening sector nose events were detected. In accordance with the mechanism suggested by Southwood and Wolf (JGR, 1978, 83, 5227) PJ was observed near the equatorial boundary of energetic ion penetration into the magnetosphere. Measurements by ionosonds at different longitudes show that the westward velocity of the frontt of PJ development is close to the gradient drift velocity of 20 keV ions (forming nose events). Thus, the physical mechanism of PJ formation due to energetic ion injection during a strong substorm burst is experimentally confirmed. Satellite measurements show that in the near midnight sector energetic ions reach the shell L=3.0 in 20-30 minutes after a substorm commencement with AE>500 nT.

Formation of polarization jet during injection of ions into the inner magnetosphere / V. L. Khalipov, Yu. I. Galperin, A. E. Stepanov, E. D. Bondar // Physics of auroral phenomena : proceedings of the 25th annual seminar, Apatity, 26 February – 1 March 2002. – 2002. – P. 43-46.
DOI: 10.1016/S0273-1177(03)00016-4

48.

Количество страниц: 4 с.

Asymmetry in substorm development in the earth's northern and southern hemispheres / V. A. Velichko, R. N. Boroyev, M. G. Gelberg, D. G. Baishev, J. V. Olson, R. J. Morris, K. Yumoto // Physics of auroral phenomena : proceedings of the 25th annual seminar, Apatity, 26 February – 1 March 2002. – 2002. – P. 33-36.

49.

Количество страниц: 3 с.

Boroyev, R. N. Dynamics of field-aligned currents during substorms / R. N. Boroyev // Physics of auroral phenomena : proceedings of the 25th annual seminar, Apatity, 26 February – 1 March 2002. – 2002. – P. 9-11.

50.

Количество страниц: 4 с.

The spatial-temporal distribution of westward electrojets in the northern hemisphere has been investigated using geomagnetic ground observation data for November 9-10, 2004 geomagnetic storm. It is shown that the location of the maximum westward electrojet depends on the IMF orientation. It is in the evening or morning sector when Bγ0. With the increase of positive IMF Bγ, the region of intensity maximum shifts to morning hours. Thus, the azimuthal IMF component not only controls the pattern of magnetospheric convection, but also affects the longitudinal location of the westward electrojet pattern during the magnetic storm.

Influence of IMF by on the location of western electrojets during the magnetic storm on Nov. 9-10, 2004 / R. N. Boroev, A. Du, S. I. Solovyev, W.-Y. Xu, G.-X. Chen, V. A. Velichko // Physics of auroral phenomena : proceedings of the 29th annual seminar, Apatity, 27 February–3 March 2006. – 2007. – P. 21-24.